# The boy girl paradox

Imagine that a family has two children, one of whom we know to be a boy. What then is the probability that the other child is a boy? The obvious answer is to say that the probability is 1/2—after all, the other child can only be *either* a boy *or* a girl, and the chances of a baby being born a boy or a girl are (essentially) equal. In a two-child family, however, there are actually four possible combinations of children: two boys (MM), two girls (FF), an older boy and a younger girl (MF), and an older girl and a younger boy (FM). We already know that one of the children is a boy, meaning we can eliminate the combination FF, but that leaves us with three equally possible combinations of children in which *at least* one is a boy—namely MM, MF, and FM. This means that the probability that the other child *is* a boy—MM—must be 1/3, not 1/2.

[…] Boy-girl paradox […]

Thank you for sharing.

How do you start a blog? And what is the best way?

Hi there just wanted to give you a quick heads up. The words in your content seem to be

running off the screen in Safari. I’m not sure if this is a format issue or something to do with internet browser compatibility but I figured I’d post to let you know.

The style and design look great though! Hope you get the issue resolved soon. Many thanks

Will look into it. Thanks

000568-000039made a post